Course options
Key information
Duration: 4 years full time
UCAS code: F372
Institution code: R72
Campus: Egham
The course
Physics with Particle Physics MSci (MSci)
- Taught by world-leading experts in areas like the Higgs boson, Top quark and future accelerators.
- Visit CERN with our academics and researchers based at CERN, for a unique view of the world’s largest scientific experiments.
- Final year research project within particle theory, dark matter, ATLAS or accelerator physics groups.
- Advanced courses in statistical data analysis and machine learning, critical for understanding high energy physics data and complex problems in the real world.
From time to time, we make changes to our courses to improve the student and learning experience. If we make a significant change to your chosen course, we’ll let you know as soon as possible.
Course structure
Core Modules
Year 1
-
In this module you will develop an understanding of how to solve problems involving one variable (either real or complex) and differentiate and integrate simple functions. You will learn how to use vector algebra and geometry and how to use the common probability distributions.
-
In this module you will develop an understanding of how to solve problems involving more than one variable. You will learn how to use matrices and solves eigenvalue problems, and how to manipulate vector differential operators, including gradient, divergence and curl. You will also consider their physical significance and the theorems of Gauss and Stokes.
-
In this module you will develop an understanding of good practices in the laboratory. You will keep a notebook, recording experimental work as you do it. You will set up an experiment from a script, and carry out and record measurements. You will learn how to analyse data and plot graphs using a computer package, and present results and conclusions including error estimations from your experiments.
-
In this module you will develop a range of skills in the scientific laboratory. You will learn how to use the Mathematica algebra software package to solve simple problems and carry out a number of individually programmed physics experiments. You will also work as part of a team to investigate an open-ended computational problem.
-
In this module you will develop an understanding of how to apply the techniques and formulae of mathematical analysis, in particular the use of vectors and calculus, to solve problems in classical mechanics. You will look at statics, dynamics and kinematics as applied to linear and rigid bodies. You will also examine the various techniques of physical analysis to solve problems, such as force diagrams and conservation principles.
-
In this module you will develop an understanding of how electric and magnetic fields are generated from static charges and constant currents flowing through wires. You will derive the properties of capacitors and inductors from first principles, and you will learn how to analyse simple circuits. You will use complex numbers to describe damped harmonic oscillations, and the motion of transverse and longitudinal waves.
-
In this module you will develop an understanding of the macroscopic properties of the various states of matter, looking at elementary ideas such as ideal gases, internal energy and heat capacity. Using classical models of thermodynamics, you will examine gases, liquids, solids, and the transitions between these states, considering phase equilibrium, the van der Waals equation and the liquefaction of gases. You will also examine other states of matter, including polymers, colloids, liquid crystals and plasmas.
-
In this module you will develop an understanding of the building blocks of fundamental physics. You will look at Einstein’s special theory of relativity, considering time-dilation and length contraction, the basics of quantum mechanics, for example wave-particle duality, and the Schrödinger equation. You will also examine concepts in astrophysics such as the Big Bang theory and how the Universe came to be the way we observe it today.
-
This module will describe the key principles of academic integrity, focusing on university assignments. Plagiarism, collusion and commissioning will be described as activities that undermine academic integrity, and the possible consequences of engaging in such activities will be described. Activities, with feedback, will provide you with opportunities to reflect and develop your understanding of academic integrity principles.
Year 2
-
In this module you will develop an understanding of the mathematical representation of physical problems, and the physical interpretation of mathematical equations. You will look at ordinary differential equations, including linear equations with constant coefficients, homogeneous and inhomogeneous equations, exact differentials, sines and cosines, Legendre poynomials, Bessel's equation, and the Sturm-Liouville theorem. You will examine partial differential equations, considering Cartesian and polar coordinates, and become familiar with integral transforms, the Gamma function, and the Dirac delta function.
-
In this module you will develop an understanding of how computers are used in modern science for data analysis and visualisation. You will be introduced to the intuitive programming language, Python, and looking at the basics of numerical calculation. You will examine the usage of arrays and matrices, how to plot and visualise data, how to evaluate simple and complex expressions, how to sample using the Monte Carlo methods, and how to solve linear equations.
-
In this module you will develop an understanding of quantum mechanics and its role in and atomic, nuclear, particle and condensed matter physics. You will look at the wave nature of matter and the probabilistic nature of microscopic phenomena. You will learn how to use the key equation of quantum mechanics to describe fundamental phenomena, such as energy quantisation and quantum tunnelling. You will examine the principles of quantum mechanics, their physical consequences, and applications, considering the nature of harmonic oscillator systems and hydrogen atoms.
-
This module will consolidate the core laboratory components from other modules together with an introduction to particle physics experiments and a field trip to a particle physics facility to create a coherent, stand-alone course designed to build your lab experience with more specialist support, enabling you to engage better with course material.
-
In this module you develop an understanding of the properties of light, starting from Maxwell’s equations. You will look at optical phenomena such as refraction, diffraction and interference, and how they are exploited in modern applications, from virtual reality headsets to the detection of gravitational waves. You will also examine masers and lasers, and their usage in optical imaging and image processing.
-
In this module you will develop an understanding of how James Clerk Maxwell unified all known electrical and magnetic effects with just four equations, providing Einstein’s motivation for developing the special theory of relativity, explaining light as an electromagnetic phenomenon, and predicting the electromagnetic spectrum. You examine these equations and their consequences, looking at how Maxwell’s work underpins all of modern physics and technology. You will also consider how electromagnetism provides the paradigm for the study of all other forces in nature.
-
In this module you will develop an understanding of thermal physics and elementary quantum mechanics. You will look at the thermodynamic properties of an ideal gas, examining the solutions of Schrödinger’s equation for particles in a box, and phenomena such as negative temperature, superfluidity and superconductivity. You will also consider the thermodynamic equilibrium process, entropy in thermo-dynamics, and black-body radiation.
-
In this module you will develop an understanding of the physical properties of solids. You will look at their structure and symmetry, concepts of dislocation and plastic deformation, and the electrical characteristics of metals, alloys and semiconductors. You will examine methods of probing solids and x-ray diffraction, and the thermal properties of photons. You will also consider the quantum theory of solids, including energy bands and the Bloch theorem, as well as exploring fermiology, intrinsic and extrinsic semiconductors, and magnetism.
Year 3
- Advanced Skills in Physics
- Quantum Theory
- Particle Physics
- Particle Detectors and Accelerators
- Particle Astrophysics
Year 4
- Major Project in Physics
- Research Review
Optional Modules
There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.
Year 1
-
All modules are core
Year 2
-
All modules are core
Year 3
- Advanced Classical Physics
- Further Mathematical Methods
- Nonlinear Systems and Chaos
- Metals and Semiconductors
- General Relativity and Cosmology
- Stellar Astrophysics
- Planetary Geology and Geophysics
-
In this module you will develop an understanding of astronomy, and observations of different wavelengths. You will look at the merits and limitations of earth and space-based telescopes, and consider key concepts, including coordinate systems, timekeeping systems, brightness measurement, distance, colour, temperature and spectrum. You will also examine the contents of the solar system, including the planets and their moons, rings, asteroids, comets, dust and the solar wind.
- Energy and Climate Science
- Atomic Physics
Year 4
- Lie Groups and Lie Algebras
- Statistical Mechanics
- Advanced Quantum Theory
- Photonics and Metamaterials
- Particle Physics
- Particle Accelerator Physics
- Order and Excitations in Condensed Matter
- Theoretical Treatments of Nano-systems
- Nano-Electronics and Quantum Technolog
-
Superconductors demonstrate remarkable macroscopic quantum behaviour and underpin quantum technologies. This module introduces the superconductivity in the context of the more general phenomenon of superfluidity, presents the unique electrical, magnetic and thermodynamic properties of the superconductors in conjunction with phenomenological theory and technological applications, and discusses the microscopic physics that leads to the superconductivity and various classes of superconducting materials.
- Standard Model Physics and Beyond
- Statistical Data Analysis
- String Theory and Branes
- Supersymmetry and Conformal Field Theory
- Astroparticle Cosmology
- Theory of Complex Networks
- Equilibrium Analysis of Complex Systems
- Dynamical Analysis of Complex Systems
- Mathematical Biology
- Elements of Statistical Learning
- Advanced Classical Physics
- Further Mathematical Methods
- Quantum Field Theory
- Modelling Quantum Many-Body Systems
- Advanced Condensed Matter
- Gravitational Wave Physics
- Dark Matter & Dark Energy
- Research Topics in Astrophysics
Teaching & assessment
Entry requirements
A Levels: AAA-AAB
Required subjects:
- A-levels in Mathematics and Physics, plus a pass in the practical element of all science A-levels being taken.
- At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.
Where an applicant is taking the EPQ alongside A-levels, the EPQ will be taken into consideration and result in lower A-level grades being required. For students who are from backgrounds or personal circumstances that mean they are generally less likely to go to university, you may be eligible for an alternative lower offer. Follow the link to learn more about our contextual offers.
T-levels
We accept T-levels for admission to our undergraduate courses, with the following grades regarded as equivalent to our standard A-level requirements:
- AAA* – Distinction (A* on the core and distinction in the occupational specialism)
- AAA – Distinction
- BBB – Merit
- CCC – Pass (C or above on the core)
- DDD – Pass (D or E on the core)
Where a course specifies subject-specific requirements at A-level, T-level applicants are likely to be asked to offer this A-level alongside their T-level studies.
English language requirements
All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.
The scores we require
- IELTS: 6.5 overall. No subscore lower than 5.5.
- Pearson Test of English: 61 overall. Writing 54. No subscore lower than 51.
- Trinity College London Integrated Skills in English (ISE): ISE III.
- Cambridge English: Advanced (CAE) grade C.
Country-specific requirements
For more information about country-specific entry requirements for your country please visit here.
Undergraduate preparation programme
For international students who do not meet the direct entry requirements, for this undergraduate degree, the Royal Holloway International Study Centre offers an International Foundation Year programme designed to develop your academic and English language skills.
Upon successful completion, you can progress to this degree at Royal Holloway, University of London.
Your future career
Fees, funding & scholarships
Home (UK) students tuition fee per year*: £9,250
EU and international students tuition fee per year**: £28,900
Other essential costs***: £55
How do I pay for it? Find out more about funding options, including loans, scholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.
*The tuition fee for UK undergraduates is controlled by Government regulations. The fee for the academic year 2024/25 is £9,250 and is provided here as a guide. The fee for UK undergraduates starting in 2025/26 has not yet been set, but will be advertised here once confirmed.
**This figure is the fee for EU and international students starting a degree in the academic year 2025/26.
Royal Holloway reserves the right to increase tuition fees annually for overseas fee-paying students. The increase for continuing students who start their degree in 2025/26 will be 5%. For further information see fees and funding and the terms and conditions.
*** These estimated costs relate to studying this particular degree at Royal Holloway during the 2025/26 academic year and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing, have not been included.